» 
alemán árabe búlgaro checo chino coreano croata danés eslovaco esloveno español estonio farsi finlandés francés griego hebreo hindù húngaro indonesio inglés islandés italiano japonés letón lituano malgache neerlandés noruego polaco portugués rumano ruso serbio sueco tailandès turco vietnamita
alemán árabe búlgaro checo chino coreano croata danés eslovaco esloveno español estonio farsi finlandés francés griego hebreo hindù húngaro indonesio inglés islandés italiano japonés letón lituano malgache neerlandés noruego polaco portugués rumano ruso serbio sueco tailandès turco vietnamita

definición - Axiom_of_dependent_choice

definición de Axiom_of_dependent_choice (Wikipedia)

   Publicidad ▼

Wikipedia

Axiom of dependent choice

                   

In mathematics, the axiom of dependent choices, denoted DC, is a weak form of the axiom of choice (AC) which is still sufficient to develop most of real analysis. Unlike full AC, DC is insufficient to prove (given ZF) that there is a nonmeasurable set of reals, or that there is a set of reals without the property of Baire or without the perfect set property.

The axiom can be stated as follows: For any nonempty set X and any entire binary relation R on X, there is a sequence (xn) in X such that xnRxn+1 for each n in N. (Here an entire binary relation on X is one such that for each a in X there is a b in X such that aRb.) Note that even without such an axiom we could form the first n terms of such a sequence, for any natural number n; the axiom of dependent choices merely says that we can form a whole sequence this way.

If the set X above is restricted to be the set of all real numbers, the resulting axiom is called DCR.

DC is the fragment of AC required to show the existence of a sequence constructed by transfinite recursion of countable length, if it is necessary to make a choice at each step.

DC is (over the theory ZF) equivalent to the statement that every (nonempty) pruned tree has a branch. It is also equivalent[1] to the Baire category theorem for complete metric spaces.

The axiom of dependent choice implies the Axiom of countable choice, and is strictly stronger.

  Footnotes

  1. ^ Blair, Charles E. The Baire category theorem implies the principle of dependent choices. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977), no. 10, 933--934.

  References

  • Jech, Thomas, 2003. Set Theory: The Third Millennium Edition, Revised and Expanded. Springer. ISBN 3-540-44085-2.
   
               

 

todas las traducciones de Axiom_of_dependent_choice


Contenido de sensagent

  • definiciones
  • sinónimos
  • antónimos
  • enciclopedia

  • definition
  • synonym

   Publicidad ▼

Investigaciones anteriores en el diccionario :

4494 visitantes en línea

computado en 0,031s

   Publicidad ▼

   Publicidad ▼