» 
alemán árabe búlgaro checo chino coreano croata danés eslovaco esloveno español estonio farsi finlandés francés griego hebreo hindù húngaro indonesio inglés islandés italiano japonés letón lituano malgache neerlandés noruego polaco portugués rumano ruso serbio sueco tailandès turco vietnamita
alemán árabe búlgaro checo chino coreano croata danés eslovaco esloveno español estonio farsi finlandés francés griego hebreo hindù húngaro indonesio inglés islandés italiano japonés letón lituano malgache neerlandés noruego polaco portugués rumano ruso serbio sueco tailandès turco vietnamita

definición - VIRTUAL MEMORY SYSTEM

definición de VIRTUAL MEMORY SYSTEM (Wikipedia)

   Publicidad ▼

Wikipedia

OpenVMS

From Wikipedia, the free encyclopedia

  (Redirected from Virtual Memory System)
Jump to: navigation, search
OpenVMS
old logo

OpenVMS V7.3-1 running the CDE-based DECwindows GUI
Company / developerHewlett-Packard and Digital Equipment Corporation
Programmed inBLISS, VAX Macro, C, Ada, PL/I, Fortran, UIL, SDL, Pascal, MDL, C++, DCL, Message, and Document[1]
OS familyDEC OS family
Working stateCurrent
Source modelClosed source
Latest stable releaseOpenVMS 8.3-1H1/ October 25, 2007; 2 years ago
Marketing targetHigh-end computer server
Available language(s)English
Available programming languages(s)Ada, BASIC, BLISS, C, C++, COBOL, DIBOL, DCL, Fortran, Lisp, MACRO32/64, Modula-2, OPS5, Pascal, Perl, Python, PL/I, Java
Update methodConcurrent Upgrades,
Rolling Upgrades
Package managerPCSI and VMSINSTAL
Supported platformsVAX, Alpha, Itanium
Kernel typeMonolithic kernel with loadable modules
Default user interfaceDCL CLI and DECwindows GUI
LicenseProprietary
WebsiteHP OpenVMS website

OpenVMS (Open Virtual Memory System[2]), previously known as VAX-11/VMS, VAX/VMS or (informally) VMS, is a high-end computer server operating system that runs on VAX, Alpha and Itanium-based families of computers.[3][4][5] Unlike some other mainframe-oriented operating systems such as z/OS, OpenVMS has a GUI with quite complete graphics support. Digital Equipment Corporation's VAX was one of the three biggest selling workstations lines in the early 1990s, together with Domain/OS based workstations from Apollo and Sun Microsystems UNIX workstations. There was support for professional DTP and CAE software running under VMS on VAX computers [6]. AXP VMS even supported OpenGL [7]and AGP graphics adapters. It has been used in school education (for example, in School №1 in Voronezh[8]) as well as for home hobbyist use.

OpenVMS is a multi-user, multiprocessing virtual memory-based operating system (OS) designed for use in time sharing, batch processing, real-time (where process priorities can be set higher than OS kernel jobs),and transaction processing. It offers high system availability through clustering, or the ability to distribute the system over multiple physical machines. This allows the system to be "disaster-tolerant" against natural disasters that may disable individual data-processing facilities. VMS also includes a process priority system that allows for real-time process to run unhindered, while user processes get temporary priority "boosts" if necessary.[9][10][11]

OpenVMS commercialized many features that are now considered standard requirements for any high-end server operating system. These include:

Enterprise-class environments typically select and use OpenVMS for various purposes including as a mail server, network services, manufacturing or transportation control and monitoring, critical applications and databases, and particularly environments where system uptime and data access is critical. System up-times of a decade or more[27] have been reported, and features such as Rolling Upgrades and clustering allow clustered applications and data to remain continuously accessible while operating system software and hardware maintenance and upgrades are performed, or when a whole data center is destroyed. Customers using OpenVMS include banks and financial services, hospitals and healthcare, network information services, and large-scale industrial manufacturers of various products.

Contents

History

Origin and name changes

In April 1975, Digital Equipment Corporation embarked on a hardware project, code named Star, to design a 32-bit virtual address extension to its PDP-11 computer line. A companion software project, code named Starlet, was begun in June 1975 to develop a totally new operating system, based on RSX-11M, for the Star family of processors. These two projects were tightly integrated from the beginning. Gordon Bell[28] was the VP lead on the VAX hardware and its architecture. Roger Gourd was the project lead for the Starlet program, with software engineers Dave Cutler (who would later lead development of Microsoft's Windows NT), Dick Hustvedt, and Peter Lippman acting as the technical project leaders, each having responsibility for a different area of the operating system. The Star and Starlet projects culminated in the VAX 11/780 computer and the VAX-11/VMS operating system. The Starlet name survived in VMS as a name of several of the main system libraries, including STARLET.OLB and STARLET.MLB.

Over the years the name of the product has changed. In 1980 it was renamed, with version 2.0 release, to VAX/VMS (at the same time as the VAX-11 computer was renamed to simply VAX). With the introduction of the MicroVAX range such as the MicroVAX II and MicroVAX 2000 in the mid-to-late 1980s, DIGITAL released MicroVMS versions specifically targeted for these platforms which had much more limited memory and disk capacity; e.g. the smallest MicroVAX 2000 had a 40MB RD32 hard disk and only 4MB of RAM, and its CPU had to emulate some of the VAX floating point instructions in software. MicroVMS kits were released for VAX/VMS 4.0 to 4.7 on TK50 tapes and RX50 floppy disks, but discontinued with VAX/VMS 5.0. In 1991 it was renamed again to OpenVMS to indicate its support for industry standards such as POSIX and Unix compatibility, and to drop the hardware connection as the port to DIGITAL's 64-bit Alpha RISC processor was in process. The OpenVMS name first appeared after the version 5.4-2 release.

It is a curious coincidence that the initials for Windows NT (WNT) are a one letter shift of "VMS", and that the lead developer of both systems was Dave Cutler; this link has not been verified as intentional.

Port to DEC Alpha

The VMS port to Alpha resulted in the creation of a second and separate source code libraries (based on a source code management tool known as VDE) for the VAX 32-bit source code library and a second and new source code library for the Alpha (and the subsequent Itanium port) 64-bit architectures. 1992 saw the release of the first version of OpenVMS for Alpha AXP systems, designated OpenVMS AXP V1.0 (the decision to use the 1.x version numbering stream for the pre-production quality releases of OpenVMS AXP caused confusion for some customers and was not repeated in the next platform port to the Itanium).

In 1994, with the release of OpenVMS version 6.1, feature (and version number) parity between the VAX and Alpha variants was achieved. This was the so-called Functional Equivalence[29] release, in the marketing materials of the time. Some features were missing however, e.g. based shareable images, which were implemented in later versions. Subsequent version numberings for the VAX and Alpha variants of the product have remained consistent through V7.3, though Alpha subsequently diverged with the availability of the V8.2 and V8.3 releases.

For general details on the port to Alpha, see the OpenVMS 20th Anniversary book. For technical details on the port, see the DIGITAL Technical Journal Volume 4 Number 4.

Port to Intel Itanium

In 2001, just prior to its acquisition by Hewlett-Packard, Compaq announced the port of OpenVMS to the Intel Itanium architecture.[30] This port was accomplished using source code maintained in common within the OpenVMS Alpha source code library, with conditional and additional modules where changes specific to Itanium were required. The OpenVMS Alpha pool was chosen as the basis of the port as it was significantly more portable than the original OpenVMS VAX source code, and because the Alpha source code pool was already fully 64-bit capable (unlike the VAX source code pool). With the Alpha port, many of the VAX hardware-specific dependencies had been previously moved into the Alpha SRM firmware for OpenVMS. Features necessary for OpenVMS were then moved from SRM into OpenVMS I64 as part of the Itanium port.[31]

Unlike the port from VAX to Alpha, in which a "snapshot" of the VAX code base circa V5.4-2[29] was used as the basis for the Alpha release and the 64-bit source code pool then diverged, the OpenVMS Alpha and I64 (Itanium) versions of OpenVMS are built and maintained using a common source code library and common tools. The core software source code control system used for OpenVMS is the VMS Development Environment (VDE); see the VDE installation kit for details.

Two pre-production releases, OpenVMS I64 V8.0 and V8.1, were available in June 30, 2003 and in December 18, 2003. These releases were intended for HP organizations and third-party vendors involved with porting software packages to OpenVMS I64.

The following are recent OpenVMS I64 releases:

OpenVMS I64 V8.2, the first production-quality Itanium release, was shipped January 13, 2005. A V8.2 release is also available for Alpha platforms.

OpenVMS I64 V8.2-1, adding support for Integrity Superdome and cell based systems, was released in September 2005. V8.2-1 is available for Itanium platforms only.

OpenVMS I64 V8.3, was released for Itanium platforms in September 2006. V8.3 is also available for Alpha systems.

OpenVMS I64 V8.3-1H1, was released in October 2007. It features full c-Class Integrity BladeServer blade support. See the full announcement for details.HP BladeSystem information for details on blade server products from HP.

OpenVMS I64 and Alpha V8.4, currently planned for the first half of 2010. See the OpenVMS Roadmap for details on future OpenVMS releases.

For technical details on the OpenVMS port to Itanium, see the OpenVMS Technical Journal V6. In particular, see the Porting OpenVMS to Integrity article. Information on OpenVMS releases from V4.0 to current is available, as are listings of upgrade paths in the OpenVMS FAQ and at the HP OpenVMS site.

Major release timeline

DateVersionNote
October 25, 1977V1.0Initial commercial release
April, 1980V2.0VAX-11/750
April, 1982V3.0VAX-11/730
September, 1984V4.0VAX 8600 and MicroVMS (for MicroVAX)
April, 1988V5.0VAX 6000
November, 1992V1.0first OpenVMS AXP (Alpha) specific version
June, 1993V6.0VAX 7000 and 10000
April/May, 1994V6.1merging of VAX and Alpha AXP version numbers
January, 1996V7.0full 64-bit virtual addressing on Alpha
1997V7.1
June, 2003V8.0limited availability eval for Integrity
February, 2005V8.2Common Alpha and Itanium release
September, 2006V8.3Alpha, Itanium dual-core support
October, 2007V8.3-1H1c-Class Integrity blade server support

Features

Window system

OpenVMS uses the DECwindows Motif user interface (based on CDE) layered on top of OpenVMS's X11 compliant windowing system.[32][33]

Clustering

OpenVMS supports clustering (first called VAXcluster and later VMScluster), where multiple systems share disk storage, processing, job queues and print queues, and are connected either by specialized hardware or an industry-standard LAN (usually Ethernet). A LAN-based cluster is often called a LAVc, for Local Area Network VMScluster, and allows, among other things, bootstrapping a possibly diskless satellite node over the network using the system disk of a bootnode.

VAXcluster support was first added in VMS version 4, which was released in 1984. This version only supported clustering over CI. Later releases of version 4 supported clustering over LAN (LAVC), and support for LAVC was improved in VMS version 5, released in 1988.

Mixtures of cluster interconnects and technologies are permitted, including Gigabit (GbE) Ethernet, SCSI, FDDI, DSSI, CI and Memory Channel adapters.

OpenVMS supports up to 96 nodes in a single cluster, and allows mixed-architecture clusters, where VAX and Alpha systems, or Alpha and Itanium systems can co-exist in a single cluster (Various organizations have demonstrated triple-architecture clusters and cluster configurations with up to 150 nodes, but these configurations are not supported by HP).

Unlike many other clustering solutions, VAXcluster offers transparent and fully distributed read-write with record-level locking, which means that the same disk and even the same file can be accessed by several cluster nodes at once; the locking occurs only at the level of a single record of a file, which would usually be one line of text or a single record in a database. This allows the construction of high-availability multiply-redundant database servers.

Cluster interconnections can span upwards of 500 miles, allowing member nodes to be located in different buildings on an office campus, or in different cities.

Host-based volume shadowing allows volumes (of the same or of different sizes) to be shadowed (mirrored) across multiple controllers and multiple hosts, allowing the construction of disaster-tolerant environments.

Full access into the distributed lock manager (DLM) is available to application programmers, and this allows applications to coordinate arbitrary resources and activities across all cluster nodes. This obviously includes file-level coordination, but the resources and activities and operations that can be coordinated with the DLM are completely arbitrary.

With the supported capability of rolling upgrades and with multiple system disks, cluster configurations can be maintained on-line and upgraded incrementally. This allows cluster configurations to continue to provide application and data access while a subset of the member nodes are upgraded to newer software versions.

For general details, see the OpenVMS Cluster SPD. For more specific details, see the clustering-related manuals in the OpenVMS documentation set.

File system

OpenVMS has a very feature-rich file system, with support for stream and record-oriented IO, ACLs, and file versioning. The typical user and application interface into the file system is the RMS.

Details are in the RMS Utilities and RMS programming manuals, and in the I/O User's Reference Manual, all part of the OpenVMS documentation set. Also see the available ODS2 documentation, as well as the VMS File Systems Internals book, by Kirby McCoy, ISBN 1-55558-056-4.

Timekeeping

OpenVMS represents system time as the 64-bit number of 100 nanosecond intervals (that is, ten million units per second) since the epoch. The epoch of OpenVMS is midnight preceding November 17, 1858, which is the start of Modified Julian Day numbering. The clock is not necessarily updated every 100 ns; for example, systems with a 100 Hz interval timer simply add 100 000 to the value every hundredth of a second. The operating system includes a mechanism to adjust for hardware timekeeping drift; when calibrated against a known time standard, it easily achieves an accuracy better than 0.01%. All OpenVMS hardware platforms derive timekeeping from an internal clock not associated with the AC supply power frequency.

While the system is shut down, time is kept by a Time-of-Year ("TOY") hardware clock. This clock keeps time to a lower resolution (perhaps 1 second) and generally, a lower accuracy (often 0.025% versus 0.01%). When the system is restarted, the VMS 64-bit time value is recomputed based on the time kept by the TOY clock and the last recorded year (stored on the system disk).

The 100 nanosecond granularity implemented within OpenVMS and the 63-bit absolute time representation (the sign bit indicates absolute time when clear and relative time when set) should allow OpenVMS trouble-free time computations up to 31-JUL-31086 02:48:05.47. At this instant, all clocks and time-keeping operations in OpenVMS will suddenly fail, since the counter will overflow and start from zero again.

Though the native OpenVMS time format can range far into the future, applications based on the C runtime library will likely encounter timekeeping problems beyond January 19, 2038 due to the Year 2038 problem. Many components and applications may also encounter field-length-related date problems at year 10000 (see the Year 10,000 problem).

Detailed information on time and timekeeping, and on daylight saving time and timezone differential factor operations, is contained in the OpenVMS FAQ.

Programming

The common language programming environment is described in the OpenVMS Calling Standard and the OpenVMS Programming Concepts manuals. This provides mixed-language calls, and a set of language-specific, run-time library (RTL), and system service routines. The language calls and the RTLs are implemented in user-mode shareable images, while the system services calls are generally part of the operating system, or part of privileged-mode code. This distinction between languages and RTLs and system services was once fairly clean and clear, but the implementations and specifics have become rather more murky over the years.

Various utilities and tools are integrated, as are various add-on languages and tools.

Many Programming Examples are available, see the pointers in the OpenVMS FAQ.

Debugging

The VMS Debugger supports all DEC Compilers and many third party languages too. It allows breakpoints, watchpoints and interactive runtime program debugging either with command line or with graphical version of debugger. OpenVMS Debugger Manual

Common Language Environment

Among OpenVMS's notable features is the Common Language Environment, a strictly defined standard that specifies calling convention for functions and routines, including use of stacks, registers, etc., independently of programming language. Because of this, it is possible to call a routine written in one language (e.g. FORTRAN) from another (e.g. COBOL), without needing to know the implementation details of the target language. OpenVMS itself is implemented in a variety of different languages (primarily BLISS, VAX Macro and C) (per comp.os.vms newsgroup postings from members of HP OpenVMS Engineering), and the common language environment and calling standard supports freely mixing these languages, as well as Ada, PL/I, Fortran, Basic, and others. This is in contrast to a system such as Unix, which is implemented nearly entirely in the C language.

For details on these compilers and libraries, see the language manuals available at OpenVMS documentation.

Macro32 (an assembler on OpenVMS VAX, and a compiler on OpenVMS Alpha and on OpenVMS I64) is available within and integrated into OpenVMS. Bliss compilers are available for download from the OpenVMS Freeware, as are various ports of Perl, PHP, Ruby and other languages. Java is available from the HP Java website. C, Fortran and other languages are commercial products, and are available for purchase.

Run-time Libraries

OpenVMS contains a very rich set of Run-time Libraries (RTLs). These cover a wide range of functions, including String manipulation (STR$ routines), Mathematical operations (MTH$ routines), the Run-time Library (LIB$) routines, Screen Management operations (SMG$ routines) and a number of other categories grouped together as General Purpose functions (OTS$ routines). These functions, combined with the low-level System Services, make it easy to write complex programs.

Before writing a simple program in a High-Level language, however, the user should consider whether the required operation can be completed using DCL's functions from a command file. Start with the OpenVMS User's Guide. For details on the programming interfaces, see the associated manuals in the OpenVMS documentation.

Security

OpenVMS provides various security features and mechanisms, including security identifiers, resource identifiers, subsystem identifiers, ACLs, and detailed security auditing and alarms. Specific versions evaluated at DoD NCSC Class C2 and, with the SEVMS security enhanced services support, at NCSC Class B1, per the NCSC Rainbow Series. OpenVMS also holds an ITSEC E3 rating. For details on these ratings and the specific associated OpenVMS versions and ratings, see the NCSC and Common Criteria pages, and the associated product listings.

For details on the OpenVMS security mechanisms, see the HP OpenVMS Guide to System Security manual available at the OpenVMS documentation web site. Also see the OpenVMS Security information.

Documentation

The OpenVMS operating documentation for various recent releases and for various core OpenVMS layered products is available online at the HP website http://www.hp.com/go/openvms/doc/.

Software Product Description (SPD) documents for many OpenVMS-related products (and for OpenVMS itself) are available at http://h18000.www1.hp.com/info/spd/. SPDs are introductory and legal descriptions of various products, listing the various supported capabilities and product features.

The OpenVMS Frequently Asked Questions (FAQ) contains information and pointers associated with OpenVMS, and is available in various formats at http://www.hoffmanlabs.org/vmsfaq/.

Releases, software support status

The current OpenVMS releases are OpenVMS Alpha V8.3-1H1 for Integrity servers, and OpenVMS V8.3 for Alpha and Integrity servers.

HP provides Current Version Support (CVS) and Prior Version Support (PVS) for various OpenVMS releases. The OpenVMS Roadmap guarantees PVS status for specific releases (V5.5-2, V5.5-2H4, V6.2, V6.2-1H3, V7.3-2) until 2012, and only then ending with 24 month's prior notice. CVS is provided for the current release and for the immediately-prior release.

According the OpenVMS Roadmap as of March 1, 2009, the next OpenVMS release, OpenVMS V8.4, is scheduled for the second half of 2009, with subsequent release(s) roughly 18 to 24 months apart.

Applicable industry standards

The following are some of the industry standards claimed in the OpenVMS Software Product Description (SPD) document:

  • ANSI X3.4-1986: ASCII
  • ANSI X3.22-1973/FIPS 3-1: Magtape, 800 BPI NRZI
  • ANSI X3.27-1987/FIPS 79: Magtape, Labels and Volume Structures
  • ANSI X3.39-1986/FIPS 25: Magtape, 1600 BPI PE
  • ANSI X3.40-1983: Magtape, unrecorded
  • ANSI X3.41-1974: ASCII 7-bit control sequences
  • ANSI X3.42-1975: Numeric values in character strings
  • ANSI X3.54-1986/FIPS 50: Magtape, 6250 BPI GCR
  • ANSI X3.131-1986/ISO 9316(1989): SCSI-1
  • ANSI X3.131-1994/ISO 10288(1994): SCSI-2
  • ANSI/IEEE 802.2-1985: logical link control
  • ANSI/IEEE 802.3-1985: Ethernet CSMA/CD
  • FIPS 1-2: Code for Information Interchange; includes ANSI X3.4-1977(86)/FIPS 15; ANSI X3.32-1973/FIPS 36; ANSI X3.41-1974/FIPS 35; FIPS 7
  • FIPS 16-1/ANSI X3.15-1976: Serial Comms Bit Sequencing; FED STD 1010
  • FIPS 22-1/ANSI X3.1-1976: Synch signaling for DTE/DCE comms; FED STD 1013
  • FIPS 37/ANSI X3.36-1975: Synch High-Speed signaling for DTE/DCE comms; GIPS 1001
  • FIPS 86/ANSI X3.64-1979: Additional Controls for Use with ASCII
  • ISO 646: ISO 7-bit Coded Character Set for Information Exchange
  • ISO 1001: Magtape, Labels and Volume Structures
  • ISO 1863: Magtape, 800 BPI NRZI
  • ISO 1864: Magtape, unrecorded / NRZI and PE
  • ISO 2022: Code extensions for ISO 646
  • ISO 3307: Time and Date Representations
  • ISO 3788: Magtape, 1600 BPI PE
  • ISO 4873: 8-Bit Character Codes
  • ISO 5652: Magtape, 6250 BPI GCR
  • ISO 6429: Control Sequences
  • ISO 9660: CD-ROM volume and file structures

OpenVMS Hobbyist Program

Despite being a proprietary commercial operating system, in 1997 OpenVMS and a number of layered products were made available free of charge for hobbyist, non-commercial use as part of the OpenVMS Hobbyist Program. Since then, several companies producing OpenVMS software have made their products available under the same terms, such as Process Software and MVP Systems.

As of 2006, the time required to obtain a hobbyist license was approximately one week from start to finish; from registration with a user group through acquisition of licenses and media. Hobbyist CD media is available for US$30, including international shipping. No anonymous FTP software downloads are available to hobbyists.

More information on the hobbyist program can be found at http://www.openvmshobbyist.org/ and http://www.OpenVMS.org/. A number of hobbyist systems are open to the public, including the Deathrow Cluster.

Poetry Hacklab provides telnet and ssh access (username and password is luther) to two VAX/VMS machines located at the Freaknet Computer Museum.

Central OpenVMS-related topics

OpenVMS-related terms and acronyms include:

  • ACMS - Digital's transaction processing (TP) system, often used with the DECdtm distributed transaction manager system service components of OpenVMS, and with the DECforms and Rdb products in applications with transactional requirements
  • Asynchronous system trap (AST)
  • DECforms - Digital's successor to the Forms Management System
  • DECnet - Digital's proprietary networking architecture which also includes MOP.
  • DELTA and XDELTA - OpenVMS debuggers
  • DIGITAL Command Language (DCL) - Digital Command Language - command line interpreter.
  • DECwindows - Digital's implementation of the X Window System.
  • Event flag - a simple synchronization mechanism
  • Files-11 - low level filesystem.
  • File Description Language (FDL) - File Description Language - defines file record/field structure.
  • Forms Management System (FMS) - Digital's first generation language-independent Form driver.
  • Local Area Transport (LAT) - is a LAN-based non-routable communications protocol to support DEC and other Terminal Servers
  • QIO Queued Input Output; the low-level I/O interface
  • Oracle Rdb - An SQL compliant relational database created by DEC but now owned by Oracle
  • Record Management Services (RMS) - high-level, language/device-independent Input/output
  • Runtime libraries (RTL) - shared routines and functions, callable from any language
  • OpenVMS Galaxy - co-habitating OpenVMS installations; a form of system partitioning
  • OpenVMS Clusters - for redundancy, incremental hardware upgrades, or disaster tolerance
  • System 1032 (S1032) - A high-performance database management system and application development environment designed to support the OpenVMS user community. Used at some companies in the 1980s and 90s, but, in little use today.
  • XQP - the eXtended QIO Processor (XQP), which implements the Files-11 filesystem.

For information on layered products, see the Software Product Description (SPD) for the product. For OpenVMS components, see the OpenVMS documentation set.

See also

OpenVMS publications

  • The Minimum You Need to Know to Be an OpenVMS Application Developer, Roland Hughes, ISBN 978-0-977866-0-3 [6]
  • The Minimum You Need to Know About Java on OpenVMS, Roland Hughes, ISBN 978-0-9770866-1-0 [7]
  • The Minimum You Need to Know About Service Oriented Architecture, Roland Hughes, ISBN 978-0-9770866-6-5 [8]
  • Getting Started with OpenVMS, Michael D. Duffy, ISBN 1-55558-279-6
  • Getting Started with OpenVMS System Management, 2nd Edition, David Donald Miller, Stephen Hoffman, Lawrence Baldwin, ISBN 1-55558-243-5
  • Introduction to OpenVMS, 5th Edition, Lesley Ogilvie Rice, ISBN 1-55558-194-3
  • Introduction to OpenVMS, David W Bynon, ISBN 1-878956-61-2
  • OpenVMS Alpha Internals and Data Structures: Memory Management, Ruth Goldenberg, ISBN 1-55558-159-5
  • OpenVMS Alpha Internals and Data Structures : Scheduling and Process Control : Version 7.0, Ruth Goldenberg, Saro Saravanan, Denise Dumas, ISBN 1-55558-156-0
  • OpenVMS online documentation
  • OpenVMS Performance Management, Joginder Sethi, ISBN 1-55558-126-9
  • OpenVMS System Management Guide, Lawrence Baldwin, ISBN 1-55558-143-9
  • The OpenVMS User's Guide, Second Edition, Patrick Holmay, ISBN 1-55558-203-6
  • Using DECwindows Motif for OpenVMS, Margie Sherlock, ISBN 1-55558-114-5
  • VAX/VMS Internals and Data Structures: Version 5.2 ("IDSM"), Ruth Goldenberg, Saro Saravanan, Denise Dumas, ISBN 1-55558-059-9
  • Writing OpenVMS Alpha Device Drivers in C, Margie Sherlock, Leonard Szubowicz, ISBN 1-55558-133-1
  • Writing Real Programs in DCL, second edition, Stephen Hoffman, Paul Anagnostopoulos, ISBN 1-55558-191-9

References

  1. ^ OpenVMS FAQ
  2. ^ See the OpenVMS Software Product Description (SPD) documents for OpenVMS VAX, OpenVMS Alpha, and OpenVMS I64; see the SPD repository
  3. ^ VAX Architecture Reference Manual
  4. ^ DIGITAL Microprocessor and Alpha Architecture Library
  5. ^ Intel Itanium documentation
  6. ^ http://en.wikipedia.org/wiki/VAXstation#Software
  7. ^ http://www.faqs.org/faqs/graphics/opengl-faq/part1/
  8. ^ Voronezh school 1 site
  9. ^ OpenVMS Alpha Internals and Data Structures : Scheduling and Process Control : Version 7.0, Ruth Goldenberg, Saro Saravanan, Denise Dumas, ISBN 1-55558-156-0
  10. ^ OpenVMS Alpha Internals and Data Structures: Memory Management, Ruth Goldenberg, ISBN 1-55558-159-5
  11. ^ VAX/VMS Internals and Data Structures: Version 5.2 ("IDSM"), Ruth Goldenberg, Saro Saravanan, Denise Dumas, ISBN 1-55558-059-9
  12. ^ OpenVMS documentation; see the DECnet and TCP/IP Services documentation, and see the User's Guide
  13. ^ OpenVMS documentation; see the clustering and OpenVMS Galaxy documentation
  14. ^ OpenVMS documentation; see the RMS and XQP documentation
  15. ^ OpenVMS documentation; see the RMS documentation
  16. ^ The Oracle Rdb web site
  17. ^ OpenVMS documentation; see the languages documentation
  18. ^ OpenVMS Freeware; see the Bliss, Macro64, OPS5, Perl, PHP, Tcl/Tk and other language kits and tools
  19. ^ OpenVMS Calling Standard
  20. ^ Writing Real Programs in DCL, second edition, Stephen Hoffman, Paul Anagnostopoulos, ISBN 1-55558-191-9
  21. ^ OpenVMS documentation; see the OpenVMS User's Guide
  22. ^ OpenVMS documentation; see the OpenVMS Galaxy documentation
  23. ^ OpenVMS documentation; see OpenVMS Guide to System Security manual
  24. ^ NIST NCSC
  25. ^ National Computer Security Center (NCSC) Trusted Product Evaluation List (TPEL)
  26. ^ OpenVMS at DEFCON9
  27. ^ "The Uptimes-Project.org - Host Information: WVNETcluster". http://www.uptimes-project.org/hosts/view/150. Retrieved 2009-04-10. 
  28. ^ Gordon Bell Biography
  29. ^ a b OpenVMS VAX and Alpha Compatibility
  30. ^ OvenVMS Times article
  31. ^ Information from various comp.os.vms newsgroup postings from OpenVMS Engineers
  32. ^ HP DECwindows Motif for OpenVMS Software Product Description (SPD)
  33. ^ Using DECwindows Motif for OpenVMS, Margie Sherlock, ISBN 1-55558-114-5

External links

 

todas las traducciones de VIRTUAL MEMORY SYSTEM


Contenido de sensagent

  • definiciones
  • sinónimos
  • antónimos
  • enciclopedia

  • definition
  • synonym

   Publicidad ▼

Investigaciones anteriores en el diccionario :

3363 visitantes en línea

computado en 0,047s

   Publicidad ▼