» 
alemán árabe búlgaro checo chino coreano croata danés eslovaco esloveno español estonio farsi finlandés francés griego hebreo hindù húngaro indonesio inglés islandés italiano japonés letón lituano malgache neerlandés noruego polaco portugués rumano ruso serbio sueco tailandès turco vietnamita
alemán árabe búlgaro checo chino coreano croata danés eslovaco esloveno español estonio farsi finlandés francés griego hebreo hindù húngaro indonesio inglés islandés italiano japonés letón lituano malgache neerlandés noruego polaco portugués rumano ruso serbio sueco tailandès turco vietnamita

definición - polinomio

definición de polinomio (Wikipedia)

   Publicidad ▼

frases

diccionario analógico

   Publicidad ▼

Wikipedia

Polinomio

                   

En matemáticas, un polinomio (del griego, «poli»-muchos y «νόμος»-división, y del latín «binomius»)[1] [2] [3] es una expresión constituida por un conjunto finito de variables (no determinadas o desconocidas) y constantes (números fijos llamados coeficientes), utilizando únicamente las operaciones aritméticas de suma, resta y multiplicación, así como también exponentes enteros positivos. En términos más precisos, es una combinación lineal de productos de potencias enteras de una o de varias indeterminadas.

Es frecuente el término polinomial, como adjetivo, para designar cantidades que se pueden expresar como polinomios de algún parámetro, como por ejemplo: tiempo polinomial, etc.

Los polinomios son objetos muy utilizados en matemáticas y en ciencia. En la práctica, son utilizados en cálculo y análisis matemático para aproximar cualquier función derivable; las ecuaciones polinómicas y las funciones polinómicas tienen aplicaciones en una gran variedad de problemas, desde la matemática elemental y el álgebra hasta áreas como la física, química, economía y las ciencias sociales.

En áreas de las matemáticas aplicadas, los polinomios son utilizados para construir los anillos de polinomios, un concepto central en álgebra abstracta y geometría algebraica.

Contenido

  Definición algebraica

  Polinomios de una variable

Para a0, …, an constantes en algún anillo A (en particular podemos tomar un cuerpo, como \mathbb{R} o \mathbb{C}, en cuyo caso los coeficientes del polinomio serán números) con an distinto de cero y n \in \mathbb{N}, entonces un polinomio, P_{}^{}, de grado n en la variable x es un objeto de la forma

P(x)_{}^{} = a_n x^n + a_{n - 1} x^{n - 1}+ \cdots + a_1 x^{1} + a_0 x^{0}, \qquad x\notin A

El polinomio se puede escribir más concisamente usando sumatorios como

P(x) = \sum_{i = 0}^{n} a_{i} x^{i}.

Las constantes a0, …, an se llaman los coeficientes del polinomio. A a0 se le llama el coeficiente constante (o término independiente) y a an, el coeficiente principal. Cuando el coeficiente principal es 1, al polinomio se le llama mónico o normalizado.

  Polinomios de varias variables

Los polinomios de varias variables, a diferencia de los de una variable, tienen en total más de una variable. Por ejemplo los monomios:

5xy, 3xz^2, 4xy^2z, \dots

En detalle el último de ellos 4xy_{}^2z es un monomio de tres variables (ya que en él aparecen las tres letras x, y y z), el coeficiente es 4, y los exponentes son 1, 2 y 1 de x, y y z respectivamente.

  Grado de un polinomio

Se define el grado de un monomio como el mayor exponente de su variable. El grado de un polinomio es el del monomio de mayor grado.

Ejemplos
P(x) = 2, polinomio de grado cero (el polinomio solo consta del término independiente).
P(x) = 3x + 2, polinomio de grado uno.
P(x) = 3 + 2, polinomio de grado dos.
P(x) = 2x2+ 3x + 2, polinomio de grado dos.

Convencionalmente se define el grado del polinomio nulo como \scriptstyle -\infty. En particular los números son polinomios de grado cero.

  Operaciones con polinomios

Los polinomios se pueden sumar y restar agrupando los términos y simplificando los monomios semejantes. Para multiplicar polinomios se multiplica cada término de un polinomio por cada uno de los términos del otro polinomio y luego se simplifican los monomios semejantes.

Ejemplo

Sean los polinomios: P(x) = (2x_{}^3+4x+1) y Q(x)_{}^{} = (5x^2+3) , entonces el producto es:

P(x)Q(x)_{}^{} = (2x_{}^3+4x+1)(5x^2+3) = (2x_{}^3+4x+1)(5x^2) + (2x^3+4x+1)(3)= (10x_{}^5 + 20x^3 + 5x^2) + (6x^3+12x+3)= 10x_{}^5 + 26x^3 + 5x^2 + 12x + 3

Para poder realizar eficazmente la operación se tiene que adquirir los datos necesarios de mayor a menor. Una fórmula analítica que expresa el producto de dos polinomios es la siguiente:

P(X)Q(X)_{}^{} =  \left( \sum_{i=0}^m a_i X^i \right)
\left(\sum_{j=0}^n b_j X^j \right) = 
\sum_{k=0}^{m+n} \left(\sum_{p=0}^k a_p b_{k-p} \right) X^k

Aplicando esta fórmula al ejemplo anterior se tiene:

P(x)Q(x)_{}^{} = (2x_{}^3+4x+1)(5x^2+3) = (1\cdot 3)x_{}^0 + (4 \cdot 3)x^1 + (1 \cdot 5)x^2 + (4\cdot 5+ 2\cdot 3)x^3 + (0)x^4 + (5\cdot 2)x^5 = 10x_{}^5 + 26x^3 + 5x^2 + 12x + 3

Puede comprobarse que para polinomios no nulos se satisface la siguiente relación entre el grado de los polinomios \scriptstyle P(X) y \scriptstyle Q(X) y el polinomio producto \scriptstyle P(X)Q(X):

(*) \mbox{gr}(P(X)Q(X)) = \mbox{gr}(P(X)) + \mbox{gr}(Q(X))\,

Puesto que el producto de cualquier polinomio por el polinomio nulo es el propio polinomio nulo, se define convencionalmente que \scriptstyle \mbox{gr}(0) = -\infty (junto con la operación \forall p: -\infty + p = -\infty) por lo que la expresión (*) puede extenderse también al caso de que alguno de los polinomios sea nulos.

  Funciones polinómicas

Una función polinómica es una función matemática expresada mediante un polinomio. Dado un polinomio P[x] se puede definir una función polinómica asociada a él dado substituyendo la variable x por un elemento del anillo:

f_P:A \to A,\qquad \qquad a\in A \mapsto f_P(a)=a_n a^n + a_{n-1}a^{n-1}+\dots + a_1 a + a_0\in A

La funciones polinómicas reales son funciones suaves, es decir, son infinitamente diferenciables (tienen derivadas de todos los órdenes). Debido a su estructura simple, las funciones polinómicas son muy sencillos de evaluar numéricamente, y se usan ampliamente en análisis numérico para interpolación polinómica o para integrar numéricamente funciones más complejas. Una manera muy eficiente para evaluar polinomios es la utilización de la regla de Horner.

En álgebra lineal el polinomio característico de una matriz cuadrada codifica muchas propiedades importantes de la matriz. En teoría de los grafos el polinomio cromático de un grafo codifica las distintas maneras de colorear los vértices del grafo usando x colores.

Con el desarrollo de la computadora, los polinomios han sido remplazados por funciones spline en muchas áreas del análisis numérico. Las splines se definen a partir de polinomios y tienen mayor flexibilidad que los polinomios ordinarios cuando definen funciones simples y suaves. Éstas son usadas en la interpolación spline y en gráficos por computadora.

  Ejemplos de funciones polinómicas

Note que las gráficas representan a las funciones polinomiales y no a los polinomios en sí, pues un polinomio solo es la suma de varios monomios.

  Polinomio de grado 2:
f(x) = x2 - x - 2= (x+1)(x-2).
  Polinomio de grado 3:
f(x) = x3/5 + 4x2/5 - 7x/5 - 2=
 1/5 (x+5)(x+1)(x-2).
  Polinomio de grado 4:
f(x) = 1/14 (x+4)(x+1)(x-1)(x-3) + 0.5.
  Polinomio de grado 5:
f(x) = 1/20 (x+4)(x+2)(x+1)(x-1)(x-3) + 2.

La función

f(x)= 13x^4 - 7x^3 + \begin{matrix}\frac{2}{3}\end{matrix} x^2 - 5x + 3

es un ejemplo de función polinómica de cuarto grado, con coeficiente principal 13 y una constante de 3.

  Factorización de polinomios

En un anillo conmutativo \scriptstyle A una condición necesaria para que un monomio sea un factor de un polinomio de grado n > 1, es que el término independiente del polinomio sea divisible por la raíz del monomio:

P_n^{}(X) =  a_n X^n + \dots + a_1 X + a_0 = (X-\alpha)Q_{n-1}(X)

necesariamente \alpha_{}^{} divide a a_0^{}.

En caso de que el polinomio no tenga término independiente se sacará la incógnita como factor común y ya está factorizado. También se puede factorizar usando las igualdades notables.

Un polinomio factoriza dependiendo del anillo sobre el cual se considere la factorización, por ejemplo el polinomio X_{}^2 -2 no factoriza sobre \mathbb{Q} pero sí factoriza sobre \mathbb{R}:

X^2 - 2 = (X + \sqrt{2})(X - \sqrt{2})

Por otra parte X_{}^2+2 no factoriza ni sobre \mathbb{Q}, ni tampoco sobre \mathbb{R} aunque factoriza sobre \scriptstyle \mathbb{C}:

X^2 + 2 = (X + i \sqrt{2})(X - i \sqrt{2})

Un cuerpo en el que todo polinomio no constante factoriza en monomios es un cuerpo algebraicamente cerrado.

  Historia

  Volumen de una pirámide truncada.

La resolución de ecuaciones algebraicas, o la determinación de las raíces de polinomios, está entre los problemas más antiguos de la matemática. Sin embargo, la elegante y práctica notación que utilizamos actualmente se desarrolló a partir del siglo XV.

En el problema 14º del papiro de Moscú (ca. 1890 a. C.) se pide calcular el volumen de un tronco de pirámide cuadrangular. El escriba expone los pasos: eleva al cuadrado 2 y 4, multiplica 2 por 4, suma los anteriores resultados y multiplícalo por un tercio de 6 (h); finaliza diciendo: «ves, es 56, lo has calculado correctamente». En notación algebraica actual sería: V = h (t² + b² + tb) / 3, un polinomio de cuatro variables (V, h, t, b) que, conociendo tres, permite obtener la cuarta variable.

Algunos polinomios, como f(x) = x² + 1, no tienen ninguna raíz que sea número real. Sin embargo, si el conjunto de las raíces posibles se extiende a los números complejos, todo polinomio (no constante) tiene una raíz: ese es el enunciado del teorema fundamental del álgebra.

Hay una diferencia entre la aproximación de raíces y el descubrimiento de fórmulas concretas para ellas. Se conocen fórmulas de polinomios de hasta cuarto grado desde el siglo XVI (ver ecuación cuadrática, Gerolamo Cardano, Niccolo Fontana Tartaglia). Pero, las fórmulas para polinomios de quinto grado fueron irresolubles para los investigadores durante mucho tiempo. En 1824, Niels Henrik Abel demostró que no puede haber fórmulas generales para los polinomios de quinto grado o mayores (ver el teorema de Abel-Ruffini). Este resultado marcó el comienzo de la teoría de Galois que se ocupa del estudio detallado de las relaciones existentes entre las raíces de los polinomios.

La máquina diferencial de Charles Babbage fue diseñada para crear automáticamente tablas de valores de funciones logarítmicas y diferenciales, evaluando aproximaciones polinómicas en muchos puntos, usando el método de las diferencias de Newton.

  Véase también

  Referencias

  1. «polinomio», Diccionario de la lengua española (vigésima segunda edición), Real Academia Española, 2001, http://lema.rae.es/drae/?val=polinomio .
  2. (CNTRL), etimología.
  3. «Etymology of "polynomial"» Compact Oxford English Dictionary

  Enlaces externos

   
               

 

todas las traducciones de polinomio


Contenido de sensagent

  • definiciones
  • sinónimos
  • antónimos
  • enciclopedia

   Publicidad ▼

Investigaciones anteriores en el diccionario :

recuento · SELECCIONARAN · veraz · escacha · agradar · Astas · FUSION · gavilla · efecto · caracterizo ·
2758 visitantes en línea

computado en 0,234s

   Publicidad ▼

   Publicidad ▼